We now have the tools to put the remaining structure on $X = \operatorname{Spec} R$ by defining a sheaf of rings \mathcal{O}_X (or just \mathcal{O}) on X called the structure sheaf.

Our definition can be a little opaque, so we first describe the properties we want it to have:

- $(\cdot) \mathcal{O}(X) = \mathbb{R}$
- 2.) For $P \in X$, the stalk $\mathcal{O}_p = \mathbb{R}_p$ (localization at P).
- 3.) On a distinguished open set D(f), $O(D(f))=R_{f}$, where $R_{f} := R[\frac{1}{f}]$.

Note that if
$$D(f) \subseteq D(g)$$
, then $V(f) \supseteq V(g)$,
so $(f) \subseteq (g)$ (by replacing f and g w) their radical).

$$s_{0} \quad \alpha \left(\frac{1}{1}\right) = \frac{1}{1} \in \mathbb{C}^{+}.$$

so we have a natural map $R_g \longrightarrow R_f$ which is the localization map.

We now give two equivalent definitions of O:

Check that this is a sheaf and $O(D(f)) = R_f$.

Remark: This construction actually generalizes to any sheaf whose sections we know on a basis. Namely, suppose $\{B_i\}$ is a basis for the topology on X, and \mathcal{F} a sheaf on X. If we know $\mathcal{F}(B_i)$ and the restriction maps $\mathcal{F}(B_i) \rightarrow \mathcal{F}(B_j)$ when $B_j \subseteq B_i$, then we can iniquely!!) reconstruct \mathcal{F} as follows:

$$\mathcal{F}(u) = \lim_{B_i \in u} \mathcal{F}(B_i) \subseteq \pi \mathcal{F}(B_i)$$

Def 2: (Hartshorne) For
$$U \subseteq \text{SpecR open, define}$$

 $O(U) = \left\{ s: U \rightarrow \bigsqcup_{\text{PeU}} R_{\text{P}} \mid s(P) \in R_{\text{P}, \text{ond}} (*) \right\}$
where $(*) = \text{at each } P \in U, \exists nhood V_{p} \subseteq U, \text{ ond } f, g \in R \text{ s.t}$
for each $q \in V_{p}, g \notin q$ and $s(q) = \frac{f}{g}$.

We will usually use def 1, but it's good to know the def Hartshorpe uses too.

Suppose R is an integral domain and X=SpecR. Set K=field of fractions of R.

Then for each $f \in \mathbb{R}$, $\mathbb{R}_f \subseteq \mathbb{K}$. Moreover, if $D(g) \subset D(f)$, then the localization map

$$R_{f} \rightarrow R_{f}$$

is just an inclusion. This allows us to give a nice description of Ox in this case:

Prop: If
$$X = \text{SpecR}$$
, R an integral domain, then for
 $U \subseteq X$ open,
 $O(u) = \bigcap_{\substack{K \in U \\ D(F) \in U}} R_F \subseteq K.$

Moreover, if Y is any collection of distinguished open sets whose union is U, we have

$$Q(n) = \bigcup_{D(t) \in A} K^{t} \in K^{t}$$

Pf: let $(a_f) \in O(u) \subseteq TTR_f$. Then for We know that $a_f = a_{fg} = a_g$ in K. Thus, all coordinates are equal in K.

set
$$a = a_f$$
. Then $a \in R_g \forall D(g) \leq U_j$ so
 $a \in \bigcap R_f \implies O(u) = \bigcap_{\text{D(A) \leq u}} R_f$.

For the second statement, we know $\mathcal{O}(u) \subseteq \bigcap_{\substack{\mathsf{D}(u) \in \mathbf{Y}}} \mathbb{R}_{f}$.

Suppose $a \in \bigcap R_f$. Then the sheaf condition tells us there is a unique $(a_f) \in O(u)$ s.t. $a_f = a$. \Box

Notice that this proposition won't hold if R has zero-divirors: If $f, g \neq 0$ s.t. fg = 0, then e.g. $\mathcal{O}(X) = \mathcal{O}(\mathcal{O}(I)) = \mathbb{R} \longrightarrow \mathbb{R}_{+}$ is not an inclusion, since

$$g \mapsto \underline{q} = \underline{gf} = 0$$

Moreover, Rs and Rg aren't contained in a common ring.

Prop: If PEX=SpecR, then Op = Rp. i.e. the stalk is the ring localized at the corresponding prime ideal.

Pf: First we define a homomorphism $9: \mathcal{O}_p \rightarrow \mathbb{R}_p$. Let $s_p \in \mathcal{O}_p$ and choose a representative (s, D(f))Whose germ is s_p . Then $s = \frac{a}{f^n}$.

$$P \in D(f) = P \notin V(f)$$
, so $f \notin P$. Thus, $\frac{a}{f^n} \in R_p$, so set
 $Y(s_p) = S$.

To see that this is well-defined, take (t, D(g)) another representative. Then again $g \notin P$, so $fg \notin P$, to t = s in R_{fg} , so their images agree in R_p .

For surjectivity, take $\frac{\alpha}{f} \in \mathbb{R}_p$. Then $f \notin P$, so $P \in D(f)$. Thus, the germ of $\left(\frac{\alpha}{f}, D(f)\right)$ at P is mapped to $\frac{\alpha}{f}$ by f.

For injectivity, suppose $\Upsilon(s) = \Upsilon(t)$. Then we can find a basis heighborhood D(f) s.t. $\frac{a}{f^n}, \frac{b}{f^m} \in R_f$ have germs s and t, respectively.

Thus $\frac{a}{f^n} = \frac{b}{f^m} \in \mathbb{R}p$, so there is some $h \notin P$ s.t. $h(af^m - bf^h) = 0$. But then $\frac{a}{f^n} = \frac{b}{f^m} \in \mathbb{R}_{fh}$ so s = t.

Thus, I is an isomorphism.]